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ABSTRACT

In this era of digital revolution, voluminous amount of data are generated from different networks on a 
daily basis. Security of this data is of utmost importance. Intrusion detection systems have been found to 
be one of the best solutions in detecting intrusions. Network intrusion detection systems are employed as 
a defence system to secure networks. Various techniques for the effective development of these defence 
systems are found in the literature. However, research on the development of datasets used for training 
and testing purposes of such defence systems is of equal concern. Better datasets improve the online and 
offline intrusion detection capabilities of detection models. Benchmark datasets like KDD 99 and NSL-
KDD cup 99 are obsolete and do not contain network traces of modern attacks like Denial of Service, 
hence are unsuitable for the purpose of evaluation. In this study, a detailed analysis of CIDDS-001 
dataset was conducted and the findings are presented. A wide range of well-known machine learning 
techniques were used to analyse the complexity of the dataset. Evaluation metrics including detection 
rate, accuracy, false positive rate, kappa statistics, and root mean squared error were utilised to assess 
the performance of employed machine learning techniques. 

Keywords: Anomaly, decision tree, k-means clustering, k-nearest neighbour, labelled flow, metrics, 
random forests, signature 

INTRODUCTION

Network security has rapidly become one 
of the most pressing issues and of concern 
for web users and service providers with a 
continual growth in web utilisation (Medaglia 
& Serbanati, 2010). A secure network can 
be characterised in terms of its hardware 
and software immunity against different 
intrusions. A network can be secured by 
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incorporating strong observing, examination and safeguard procedures. Network Intrusion 
Detection System (NIDS) incorporates these procedures to defend against network intrusions 
(Debar, Dacier & Wespi, 1999). These defence systems perform continuous monitoring of 
network traffic, analyse and report any intrusions. The major components of this system include 
traffic collector, analysis engine, signature database and alarm storage, as shown in Figure 1. 
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Each component plays an important role in intrusion detection. Network traffic is captured by the 

traffic collector, that is, packet traces, analysis engine conducts a deep analysis of the captured 

traffic information and sends alarm signals to alarm storage when intrusion is detected. The 

signature database stores the signatures or patterns of known intruders, and these signatures are 

used for matching purpose. A typical NIDS is illustrated in Figure 2.	
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The signature database stores the signatures or patterns of known intruders, and these signatures 
are used for matching purpose. A typical NIDS is illustrated in Figure 2.	
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Figure 2. Illustration of Network Intrusion Detection System 

NIDS can be classified in two classes, that is, misuse detection (MD) (Zhengbing, Zhitang, & 

Junqi, 2008) and anomaly detection (AD) (Garcia-Teodoro, Diaz-Verdejo, Macia-Fernandez, & 

Vazquez, 2009). MD-based systems use traffic patterns of already known attacks for detecting 

intrusions in the network, while AD-based systems monitor any deviations from normal profiles 

of network behaviour. MD-based NIDS perform well in accuracy and have a significantly lower 

false alarm rate (FAR) but they perform poorly for unknown attacks. AD-based NIDS are 

capable of detecting novel intrusions or attacks, however, they score a higher FAR compared to 

MD-based NIDS.     

 
Most of the benchmark datasets used for the evaluation of NIDS do not contain network traces of 

modern attacks (for example, denial of service, port scanning) which make them unsuitable for 

NIDS. This limitation is solved by CIDDS-001 dataset (“CIDDS-001 dataset”, 2017) as it 

contains modern attack network traces. Machine Learning (ML) has proven to be very effective 

in the advancement of NIDS (Sommer & Paxson, 2010). It involves a detection system that 
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NIDS can be classified in two classes, that is, misuse detection (MD) (Zhengbing, 
Zhitang, & Junqi, 2008) and anomaly detection (AD) (Garcia-Teodoro, Diaz-Verdejo, Macia-
Fernandez, & Vazquez, 2009). MD-based systems use traffic patterns of already known attacks 
for detecting intrusions in the network, while AD-based systems monitor any deviations from 
normal profiles of network behaviour. MD-based NIDS perform well in accuracy and have a 
significantly lower false alarm rate (FAR) but they perform poorly for unknown attacks. AD-
based NIDS are capable of detecting novel intrusions or attacks, however, they score a higher 
FAR compared to MD-based NIDS. 

Most of the benchmark datasets used for the evaluation of NIDS do not contain network 
traces of modern attacks (for example, denial of service, port scanning) which make them 
unsuitable for NIDS. This limitation is solved by CIDDS-001 dataset (“CIDDS-001 dataset”, 
2017) as it contains modern attack network traces. Machine Learning (ML) has proven to be 
very effective in the advancement of NIDS (Sommer & Paxson, 2010). It involves a detection 
system that learns from a dataset consisting of attack and normal packet traces and then classifies 
incoming network traffic into attack or normal class. The researchers used various well-known 
supervised and unsupervised learning-based ML models which are exhibited in Figure 3. 
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more information about executed attacks. Hence, these attributes did not significantly contribute 
to the analysis. About 153,026 instances from external servers and 172,839 instances from 
OpenStack Server data were collected for analysis. Each instance of the dataset was labelled 
as normal, attacker, victim, suspicious and unknown class. Table 1 provides the description 
of CIDDS-001 dataset attributes.

Table 1 
Details of CIDDS-001   

Sl. No. Attribute Name Attribute Description
1 Src IP IP Address of the source node
2 Src Port Port of the source node
3 Dest IP IP Address of the destination node
4 Dest Port Port of the destination node
5 Proto Protocol 
6 Date first seen Start time flow first seen
7 Duration Flow duration
8 Bytes Transmitted bytes
9 Packets Transmitted packets
10 Flags TCP Flags
11 AttackDescription Additional information about attack
12 AttackType Type of attack
13 AttackID Unique attack ID (same type of attacks have same ID)
14 Class Category or label of the instance
Note: Retrieved from CIDDS-001 dataset. Copyright 2017 by CIDDS-001 dataset (Reprinted with 
permission) 

RELATED WORK

An analytical study on NSL-KDD cup 99 dataset was conducted by Aggarwal and Sharma 
(2015; “NSL-KDD cup 99 dataset”, 1999). The attributes of the dataset were categorised in four 
classes, that is, basic, content, traffic and host. The contribution of every class was evaluated 
in terms of DR and FAR. Siddiqui and Naahid (2013) performed the analysis of NSL-KDD 
dataset for Intrusion Detection (ID) using clustering algorithm-based data mining techniques. 
They used k-means clustering to build 1000 clusters over 494,020 records and focused on 
establishing a relationship between attack types and protocols used in intrusion. Artificial neural 
network (ANN) was utilised for the analysis of NSL-KDD dataset (Ingre & Yadav, 2015). 

DR for intrusion detection and attack type classification was found to be 81.2% and 72.9%, 
respectively. According to Moustafa and Slay (2015), the study on irrelevant features of KDD 
99 (“KDD 99 dataset”, 1999) and UNSW-NB15 (“UNSW-NB15 dataset”, 2017) found that 
they lead to reduction of NIDS efficiency. An association rule mining algorithm was used for 
the strongest feature selection from the two datasets and subsequently, classifiers did the task of 
evaluation in accuracy and false alarm rate (FAR). The results indicate that features of UNSW-
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NB15 are much more efficient than the KDD 99 dataset. Kayacik and Zincir-Heywood (2005) 
studied three Intrusion Detection System (IDS) benchmark datasets using ML algorithms. 
Clustering and neural network algorithms analysed the IDS datasets and distinguished the 
differences between synthetic and real-world traffic. 

Parsazad, Saboori and Allahyar (2012) proposed a fast feature selection method that finds 
low-quality features in the dataset. The variance of a random variable is used as a measure 
for finding the quality of a feature. The authors presented a comparison between popular 
existing similarity-based algorithms like maximal information compression index, correlation 
coefficient and least square regression error. The output of these algorithms recommend some 
features which are then fed to naive bayes and k-nearest neighbour classifiers for the purpose of 
testing the proposed method. This proposed technique outperformed existing similarity-based 
algorithms in terms of computational cost. 

Rampure and Tiwari (2015) suggested a rough set theory-based feature selection on KDD 
Cup99 dataset. This is based on the premise that the degree of precision in the data is lowered 
and data pattern visibility is increased. Based on this premise, facts from imperfect data 
were discovered. Feature selection using Random Forests was documented in Hasan, Nasser, 
Ahmad and Molla (2016). The researchers derived a new dataset, RRE-KDD, after removing 
redundant records from KDD99Train + and KDD99Test+ sets of the NSL-KDD dataset. RRE-
KDD is then used for the evaluation of Random Forest (RF). RF technique selects the most 
important features needed for classification and increases accuracy with reduction in time 
complexity. Janarthanan and Zargari (2017) analysed the UNSW-NB15 dataset using Weka tool. 
Different attribute selection techniques like CfsSubsetEval (attribute evaluator) with Greedy 
Stepwise method, and InfoGainAttibuteEval (attribute evaluator) with Ranker method were 
used for selecting important features. The best selected subset of attributes was utilised for 
classification using a few machine learning algorithms including RF. It was found that kappa 
statistics improved due to classification using selected features. A weighted feature selection 
method for wifi impersonation detection using AWID (“AWID dataset”, 2018) dataset was 
proposed in Aminanto, Choi, Tanuwidjaja, Yoo and  Kim (2018). The researchers used deep-
feature extraction and selection for feature reduction in the dataset. The proposed approach 
achieved an accuracy of 99.918% and a FAR of 0.012%. Verma and Ranga (2018) presented 
an analytical study on CIDDS-001 using distance-based machine learning methods, whereby 
kNN and k-means algorithms were used for complexity analysis. 

EXPERIMENTAL SETUP

Research Methodology 

Weka tool was utilised for performing the analysis (Hall et al., 2009). 

•	 Dataset preprocessing involving handling missing values and feature normalization was 
performed.

•	 Supervised and unsupervised machine learning algorithms were executed. 

•	 Results of the simulated algorithms were tabulated and analysed. 
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Supervised Learning Algorithms 

k-nearest Neighbour (kNN). kNN is an instance-based learning and classification technique 
(Cover & Hart, 1967). Basic founding of kNN algorithm is distance function that calculates the 
correspondence or dissimilarity between two instances or points. There are different distance 
measures used in kNN. The most common distance measure is Euclidean distance. It can be 
defined as D (a, b) as Equation 1 (Kaur, 2014) 

      							              (1)

where ai is the ith featured element of the instance a, bi is the ith featured element of the instance 
b and r is the total number of the features in the dataset.

Support Vector Machine (SVM). SVM aims to find a hyper-plane which classifies all the 
training instances into different classes (binary classification or multiclass classification) 
(Suykens & Vandewelle, 1999). SVM algorithm takes observed instances and associated 
outputs, that is, binary or N-ary. Then, it designs a model that can classify new instances into 
different classes. Training instances are mapped as points in coordinate space, partitioning the 
instance input sets linearly. There can be the choice of many hyper-planes that can partition 
the training instance sets but the finest choice will be that with the maximum distance from the 
nearest instance of any class. In a case of two hyper-planes, P which classifies the instances 
correctly but has less distance from the nearest instance and Q which has maximum distance 
but has a small error in classification, hyper-plane P is selected in such case. SVM is effective 
for high dimensional spaces. 

Decision Trees (DT). These are a type of supervised learning algorithms that are mostly used 
for solving classification problems of ML. Tree models in which the target variable can take 
discrete values as input are known as classification trees. DT consists of entities like leaves 
and branches. Leaves signify class labels and branches signify aggregations of attributes that 
lead to those class labels. It works with both discrete and continuous data. DT algorithm splits 
the samples into two or more homogeneous sets based on a most significant splitter in input 
variables. DT suffer from overfitting problem which can be handled by Bagging and Boosting 
(Quinlan, 1996). DT works effectively over discrete data. Figure 4 shows a typical example 
of DT (Bhargava, Sharma, Bhargava, & Mathuria, 2013). 
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Random Forests (RF). As mentioned earlier DT suffers from overfitting problem. RF corrects 
this problem efficiently by averaging multiple deep decision trees (Breiman, 2001). RF is 
the ensemble learning algorithm used to solve classification and regression problems. Their 
operation involves the building of multiple DT during training time. The output is the mode 
of the classes of the distinct DT when classification task is being performed. RF gives better 
results than DT. A simple illustration of RF is shown in Figure 5.
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Artificial Neural Networks (ANN). ANN can be visualised as a weighted directed graph 
which consists of nodes and edges (Schalkoff, 1997). Nodes represent artificial neurons and 
directed edges with weights (strength between neurons) represent connections between artificial 
neurons. The output of one neuron acts as input to another neuron. ANN receives input from 
external world in the form of vector, that is, resembling some pattern or image. The weights are 
adjusted during learning of ANN which further help to solve the classification problems. ANN 
architecture consists of the input layer, output layer and hidden layer, each layer consists of 
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neurons. Input layer receives input from the external world, output layer responds to the input 
fed to input layer on the basis of its learning capability. Hidden layer is intermediary between 
the input layer and output layer; it transforms the input in some manner such that output layer 
can utilise. These layers can be partially or fully connected. In this study, the researchers used 
multilayer perceptron model with back propagation learning.

General ANN architecture (I-H-O) for c class is shown in Figure 6, where I represents the 
count of input nodes, H represents the count of hidden layer nodes and O represent the count 
of output nodes.
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Naive Bayes (NB). NB approaches are a family of simple probabilistic classifiers constructed by 
applying Bayes theorem. NB considers naive assumption of independence between every pair 
of features or attributes (Lewis, 1998). By applying a suitable pre-processing of training data 
NB can compete with most of the advanced approaches in its domain, that is, SVM and ANN. 
NB is easy to be trained using supervised learning configuration. In many practical applications, 
parameter estimation for naive Bayes models uses the method of maximum likelihood. In other 
words, one can work with the naive Bayes model without accepting Bayesian probability or 
using any Bayesian methods. Equation 2 represents Bayes theorem. 
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where A represents target attribute or dependent event, B represents predictor attribute or prior 
event. P(A) is said to be priori probability of A and P(A|B) is called as posteriori probability 
of B and P(B|A) is likelihood of B if the hypothesis A is true. 

Deep Learning (DL). It is a method based on the learning of data representations in contrast 
to task definite methods without getting stuck to local minima. DL comprises ANN with more 
number of hidden layers making it more dense and complex (LeCun, Bengio, & Hinton, 2015). 



Evaluation of Network Intrusion Detection Systems

1315Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

It can be trained using supervised, semi-supervised or unsupervised learning. In this work, 
supervised learning is used. Cascaded multiple layers of neurons for feature extraction and 
transformation are used. It learns multiple representations of data that correspond to different 
levels of abstraction. Deep learning is applicable to many real-world problem solving situations. 
Figure 7 illustrates the deep learning model.

	

13	
	

Deep Learning (DL). It is a method based on the learning of data representations in contrast to 

task definite methods without getting stuck to local minima. DL comprises ANN with more 

number of hidden layers making it more dense and complex (LeCun, Bengio, & Hinton, 2015). It 

can be trained using supervised, semi-supervised or unsupervised learning. In this work, 

supervised learning is used. Cascaded multiple layers of neurons for feature extraction and 

transformation are used. It learns multiple representations of data that correspond to different 

levels of abstraction. Deep learning is applicable to many real-world problem solving situations. 

Figure 7 illustrates the deep learning model. 

 
 

 
Figure 6. Deep Learning Network [From “Machine Learning, Deep Learning, and AI: What’s 

the Difference?”, para. 1, by Woodie, 2017 (https://www.datanami.com/2017/05/10/machine-

learning-deep-learning-ai-whats-difference/). In the public domain.] 
 

Unsupervised Learning Algorithms  

k-means Clustering. k-means is known to be one of the simplest unsupervised learning 

algorithm from distance-based perspective. It partitions n instances into k clusters, where each 

instance is grouped with the cluster having the nearest mean. Given a set of instances (p1, p2,…, 

pn), where each instance is a d-dimensional real vector. k-means clustering aims to partition p 

instances into k (≤ p) sets Z = {Z1, Z2,…, Zk} in order to minimise the variance. k-means can be 

illustrated as Equation 3 (Kriegel, Schubert, & Zimek, 2016).  

∑∑∑
== ∈

=−
k

i
ii

k

i Zp
ziZ VarZZp

i 11

max
2 minargminarg µ         3 

where µi represents the mean of points in set Zi.  

 

Figure 7. Deep learning network [From “Machine Learning, Deep Learning, and AI: What’s the Difference?”, 
para. 1, by Woodie, 2017 (https://www.datanami.com/2017/05/10/machine-learning-deep-learning-ai-whats-
difference/). In the public domain.]
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algorithm from distance-based perspective. It partitions n instances into k clusters, where each 
instance is grouped with the cluster having the nearest mean. Given a set of instances (p1, p2,…, 
pn), where each instance is a d-dimensional real vector. k-means clustering aims to partition p 
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where µi represents the mean of points in set Zi. 

Expectation-Maximisation Clustering (EM). EM clustering technique is very similar to 
k-means clustering (Moon, 1996). EM clustering extends the basic methodology of k-means 
clustering in two ways. EM algorithm calculates the probabilities of cluster memberships based 
on one or more probability distributions. EM aims to maximisze the overall probability of the 
data, given the final clusters.

Self-Organising Maps (SOM). It is based on unsupervised learning class of neural network 
models. SOM can perform clustering of data without prior knowledge of class categories of 
input data (Kohonen, 1998). SOM provides a topology preserving mapping from the high 
dimensional data space to map neurons (units). This mapping preserves the distance between 
points. Points which are near to each other are mapped to nearby maps units in the SOM. 
SOM network can recognise inputs which it has encountered before. Figure 8 represents SOM. 
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Table 2 lists different Weka classes used for the analysis of CIDDS-001 dataset.
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Figure 7. Self-Organising Maps (SOM) 

 

Table 2 lists different Weka classes used for the analysis of CIDDS-001 dataset. 

Figure 8. Self-Organising Maps (SOM)

Table 2 
Weka classes used for analysis of CIDDS-001   

Machine Learning Techniques Weka Class
Supervised 
Learning based 
Techniques

k-Nearest Neighbour weka.classifiers.lazy.Ibk
Support Vector Machine weka.classifiers.functions.SMO
Decision Trees weka.classifiers.trees.J48
Random Forests weka.classifiers.trees.RandomForest
Artificial Neural Networks weka.classifiers.functions.MultilayerPerceptron
Naive Bayes weka.classifiers.bayes.NaiveBayes
Deep Learning weka.classifiers.functions.Dl4jMlpClassifier
k-Means Clustering weka.clusterers.SimpleKMeans

Unsupervised 
Learning based 
Techniques

Expectation-Maximization 
Clustering

weka.clusterers.EM

Self-Organizing Maps weka.clusterers.SelfOrganizingMap

Evaluation Metrics

Performance of machine learning classifiers in this analytical study were evaluated using 
eminent metrics, such as detection rate (DR), false positive rate (FPR), f-measure, accuracy, 
precision, root mean squared error and kappa statistics. All these metrics are evaluated from the 
elements of the confusion matrix. The elements of confusion matrix are true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN). Typically, TP represents the number 
of instances that are correctly classified as the attack. TN represents the number of instances that 
are correctly classified as normal. FP is the count of incorrectly classified normal instances as 
attack instances. Similarly, FN is the count of incorrectly classified attack instances as normal 
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instances. Accuracy is defined as the ratio of all correctly classified instances (TP, TN) to all 
the instances (TP, TN, FP, and FN). Accuracy is denoted by Equation 4. DR (true positive 
rate) is the ratio of correctly classified instances (TP) as attacks to all the correctly classified 
attacks (TP) and normal instances (TN). DR is represented by Equation 5. Precision (positive 
predictive value) is the ratio of TP to a total of TP and FP. Equation 6 represents precision. 
The harmonic mean of precision and DR is known as f-measure. It is denoted by Equation 7. 

Root mean squared error (RMSE) is a quadratic scoring rule which measures the average 
magnitude of the error (Levinson, 1946). It indicates the accuracy of the probability estimates 
that are generated by the classification model. Equation 8 represents the RMSE, where P is the 
original value or forecast value, O represents observed value and n is the number of samples.

In case of multi-class classification, evaluation measures like accuracy, precision and 
detection rate do not provide a full view of the classifier performance. Precision and detection 
rate are used in contrast to accuracy when there are imbalanced classes. Kappa statistics (K) 
is used in such case as it handles multi-class and imbalanced class like problems (Viera & 
Garrett, 2005). Kappa is defined in Equation 9, where Pr(a) is observed agreement and Pr(e) 
is expected agreement. K has value less than or equal to 1. Value of 0 or less represents that 
classifier is useless.

      						             (4)

      							              (5)

      								              (6)

      						             (7)

      							              (8)

      								               (9)

RESULTS AND DISCUSSION 

Various supervised and unsupervised machine learning techniques were utilised for examining 
the complexity of CIDDS-001. In this study, 10 techniques were used which included 
classification techniques like kNN, SVM, DT, ANN, DL, RF, NB, and clustering techniques 
like k-means, EM, SOMs. All the experiments were done on Weka (version 3.9.1) using Intel(R) 
7700 having a clock speed of 3.60 GHz processor with 8 GB primary memory running on 
Windows 10 Pro. Accuracy was given in scale between 0 and 1, that is, 0.36 would be 36% 
accuracy (multiplied by 100).
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Analysis of Supervised Learning Algorithms 

Analysis Using kNN. Firstly, kNN classifier is used for the analysis of external server traffic 
data. Features named “flows” and “tos” are not considered for the analytical study. Results 
of kNNclassifier execution are shown for 1, 2, 3, 4, and 5 neighbours in Table 3. Secondly, 
kNN classifier is analysed on OpenStack Server traffic data. The researchers selected 172839 
instances from week 1 traffic data using reservoir sampling (Vitter, 1985). Results of kNN 
classifier execution are shown in Table 4. Approximately for every execution of kNN classifier 
on the external server traffic data, models average accuracy is 99%. Maximum accuracy of 
99.6% was achieved with 2NN and minimum 99.3% with 5NN. Similarly, for kNN classifier 
execution on OpenStack traffic data models, average accuracy was 100% in each case, this 
may be due to a random sampling of instances from the dataset file which can lead to some 
biased instance selections. Dataset can be analysed using other evaluation metrics like ROC 
curve and FAR (Hand, 2009). 

Table 3 
Performance of kNN on external server data   

Neighbours Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure

1NN 0.995 0.004 0.998 0.995 0.996 suspicious 0.995
0.993 0.004 0.986 0.993 0.990 unknown
1.000 0.000 0.999 1.000 0.999 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

2NN 0.997 0.006 0.997 0.997 0.997 suspicious 0.996
0.990 0.003 0.991 0.990 0.990 unknown
1.000 0.000 0.999 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

3NN 0.994 0.006 0.997 0.994 0.995 suspicious 0.994
0.991 0.005 0.983 0.991 0.987 unknown
1.000 0.000 0.996 1.000 0.998 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 0.996 1.000 0.998 victim

4NN 0.996 0.007 0.996 0.994 0.996 suspicious 0.995
0.989 0.003 0.988 0.989 0.988 unknown
1.000 0.000 0.996 1.000 0.998 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

5NN 0.993 0.006 0.996 0.993 0.995 suspicious 0.993
0.989 0.005 0.982 0.989 0.986 unknown
1.000 0.000 0.996 1.000 0.998 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim



Evaluation of Network Intrusion Detection Systems

1319Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis Using Support Vector Machine. John Platt’s sequential minimal optimisation 
algorithm was used to train SVM classifier (Platt, 1998). Firstly, SVM was trained over week 
1 external server data. Accuracy of 95.3% was achieved in this case with RMSE of 0.320. 
Performance of SVM classifier on external server traffic is shown in Table 5. Secondly, SVM 
was trained over OpenStack server data.

In this case classifier achieved accuracy of 95.3% with RMSE of 0.272. Considerably good 
accuracy was achieved with SVM, hence a SVM based NIDS can be built. Modified algorithms 
for SVM training can be used to reduce model building time (Tsang, Kwok, & Cheung, 2005). 
Other variants of SVM can also be used to perform analysis of CIDDS-001. Performance of 
SVM classifier on OpenStack Traffic is tabulated in Table 6.

Table 4 
Performance of kNN on OpenStack server data   

Neighbours Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure

1NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 1.000 attacker

2NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 0.999 attacker

3NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 0.999 attacker

4NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.998 0.000 1.000 0.998 0.999 attacker

5NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 1.000 attacker

Table 5 
Performance of SVM on external server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.976 0.088 0.951 0.976 0.964 suspicious 0.953
0.860 0.018 0.933 0.860 0.895 unknown
0.981 0.001 0.968 0.981 0.974 normal
1.000 0.000 0.999 1.000 1.000 attacker
0.999 0.000 1.000 0.999 1.000 victim
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Analysis Using Decision Trees. DT J48 (C4.5) is analysed over external server traffic data. 
It takes 4.61 seconds to build model for testing. Due to pruning characteristics of J48, model 
size significantly decreased the training and testing time. The accuracy of 99.7 % was achieved 
in the first case.

In second run J48 is trained over OpenStack server data. Model building time in this case 
is 1.27 seconds which is an acceptable time for NIDS training. Fortunately J48 provides 100% 
correct classifications. Efficient split decides the correctness of DT. Hence it can be concluded 
that J48 with pruning characteristics not only achieves a good accuracy but also manages 
space complexity. Table 7 shows the performance of DT on external server traffic data. Table 
8 represents the performance of DT classifier on OpenStack server traffic data. 

Table 6 
Performance of SVM on OpenStack server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.997 0.000 0.999 0.997 0.998 victim 0.999
1.000 0.000 1.000 1.000 1.000 normal
0.998 0.000 0.997 0.998 0.998 attacker

Table 7 
Performance of DT on external server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 suspicious 0.997
1.000 0.000 0.999 0.999 0.000 unknown
1.000 0.000 1.000 1.000 0.000 normal
1.000 0.000 1.000 1.000 0.000 attacker
1.000 0.000 1.000 1.000 0.000 victim

Table 8 
Performance of DT on OpenStack Server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.000 1.000 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker
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Analysis Using Random Forests. RF works by building many small classifiers and then 
collects votes from each one to decide the class of the test instance. This works on the voting 
method where small classifiers vote and the majority vote was selected as the output class. 
Firstly, RF was used for External Server data. It took 46.98 seconds to build the model. The 
accuracy of 99% was achieved in the first run. Performance of RF classifier on external server 
traffic is presented in Table 9. 

Secondly, RF was used over OpenStack Server data. 100% accuracy was achieved second 
run model building time of 30.07 seconds. It can be observed that tree based algorithms perform 
well on CIDDS-001 dataset. RMSE is almost negligible in both cases. Performance of RF 
classifier on OpenStack server traffic is shown in Table 10. 

Table 9 
Performance of RF on external server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 suspicious 0.999
1.000 0.000 1.000 1.000 1.000 unknown
1.000 0.000 1.000 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

Table 10 
Performance of RF on OpenStack server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.000 1.000 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker

Analysis using Artificial Neural Networks. Analysis results show a very poor performance of 
ANN over both external and OpenStack server data as compared to other techniques employed. 
This may be possible due to improper dataset preprocessing. However, this can be improved 
by employing proper feature preprocessing methods (binary feature encoding). In the first run, 
ANN is tested over External Server data. About 63.8% accuracy is achieved while the model 
building time is 303.85 seconds which is very high. In second test ANN is tested on OpenStack 
server data which shows an accuracy of 8.26% with model building time of 413.63 seconds. 
Hence, ANN is unsuitable for NIDS development based on CIDDS-001. Table 11 and 12 show 
performance of ANN classifier on external and OpenStack server traffic data respectively. 
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In this study, NB was tested first on external server traffic data. In the first case, NB yielded 
accuracy of 87.1% with 0.226 RMSE. NB took 0.27 seconds to build a model from training 
data. Secondly, NB is tested over OpenStack traffic. An accuracy of 99% was achieved with 
0.074 RMSE. It took 0.34 seconds to build a model from training data in the second case. 
Results show the effectiveness of probabilistic classifiers, that is, NB takes less time in the 
model building while showing acceptable accuracy with minimum RMSE. Performance of 
NB classifier on external and OpenStack server traffic data is presented in Tables 13 and 14 
respectively. 

Table 11 
Performance of ANN on external server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 1.000 0.638 1.000 0.779 suspicious 0.638
0.000 0.000 0.000 0.000 0.000 unknown
0.000 0.000 0.000 0.000 0.000 normal
0.000 0.000 0.000 0.000 0.000 attacker
0.000 0.000 0.000 0.000 0.000 victim

Table 12 
Performance of ANN on OpenStack server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 1.000 0.083 1.000 0.153 victim 0.083
0.000 0.000 0.000 0.000 0.000 normal
0.000 0.000 0.000 0.000 0.000 attacker

Table 13 
Performance of NB on external server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.999 0.354 0.832 0.999 0.908 suspicious 0.871
0.426 0.001 0.994 0.426 0.597 unknown
0.977 0.000 1.000 0.977 0.988 normal
1.000 0.000 0.999 1.000 0.999 attacker
0.999 0.000 0.999 0.999 0.999 victim
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Analysis using Deep Learning (deeplearning4j). Using the Java based deep learning class 
(deeplearning4j (http://Deeplearning4j.org)) CIDDS-001 was analysed. In the first run external 
server traffic data was analysed using DL. Model from training data was built in 916.07 seconds. 
An accuracy of 94.05% was achieved with RMSE of 0.139. Table 15 shows the performance 
of DL based classifier on external server traffic data.

In the second test OpenStack server traffic is analysed. The model is built in 457.47 seconds 
and instances are classified with 99.96% accuracy with 0.015 RMSE. It is quite clear that 
although it takes a long time to build the model, accuracy achieved is acceptable. DL can be 
used in high computation capable systems which aim to achieve higher accuracy in the long 
run. Performance of DL classifier on OpenStack server traffic data is presented in Table 16. 

Table 14 
Performance of NB on OpenStack server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.998 0.000 1.000 0.998 0.999 victim 0.991
0.989 0.002 1.000 0.989 0.994 normal
0.998 0.010 0.906 0.998 0.950 attacker

Table 15 
Performance of DL on external server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.951 0.078 0.956 0.951 0.953 suspicious 0.941
0.874 0.039 0.864 0.874 0.869 unknown
0.994 0.001 0.980 0.994 0.987 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

Table 16 
Performance of DL on OpenStack server data   

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.997 0.000 0.999 0.997 0.998 victim 0.999
1.000 0.000 1.000 1.000 1.000 normal
0.999 0.000 0.997 0.999 0.998 attacker
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Analysis of Unsupervised Learning Algorithms

Analysis using k-means Clustering. Firstly, k-means clustering was used for analysis of 
external server traffic data. Features named “flows” and “tos” were not considered for analytical 
study. Results of execution of k-means algorithm are shown in the form of Multi-class confusion 
matrix and tabulated in Table 17. A total 38.1086% instances are correctly clustered by the 
k-means algorithm. Secondly, k-means clustering is used over OpenStack server traffic data. 
About 150,000 instances from week 1 traffic data are selected using reservoir sampling. The 
results of the second execution are in Table 18. In this experiment 99.6627 instances are 
correctly clustered. 

Table 18 
Confusion matrix for k-means on OpenStack server data   

k-means
External server 

Predicted class Accuracy
Victim Attacker Normal

Actual class victim 57955 0 0 0.997
attacker 0 57963 0
normal 90 416 33576

Table 17 
Confusion matrix for k-means on external server data   

k-means
External server 

Predicted class Accuracy
Suspicious Unknown Normal Attacker Victim

Actual Class suspicious 28952 3788 28061 17218 19833 0.381
unknown 1977 14045 330 2545 14940
normal 32 20 3038 32 3058
attacker 0 4 719 8532 0
victim 2153 0 0 0 3749

Analysis using Expectation-Maximisation Clustering. Firstly, EM algorithm was used to 
analyse external server traffic data. The same set of features as used in k-means clustering 
were used. In this experiment, accuracy of 45.9% was achieved with model building time of 
32.07 seconds. The results of this experiment are shown in the form of multi-class confusion 
matrix and tabulated in Table 19. In the second experiment, EM was tested over OpenStack 
server traffic. In this analysis, accuracy of 49.3% was achieved and the model was built in 
10.18 seconds. As compared to previously mentioned techniques, this method not only does 
time costly model building but also performs very badly. Confusion matrix for the second 
experiment is presented in Table 20. 
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Analysis using Self-Organising Maps. In the first experiment, SOM was used to analyse 
external server traffic data. SOM takes 601.37 seconds to build a model using training data. 
After applying testing data it was found that SOM correctly clustered 38.4% test instances. In 
the second experiment SOM was used to analyse OpenStack server traffic data. In this test, 
SOM built a model in 719.59 seconds. About 46.3% test instances were correctly clustered 
in this experiment. Table 21, and 22 show confusion matrix for first and second experiment 
respectively.

Table 19 
Confusion matrix for EM on external server data   

EM 
External server 

Predicted class Accuracy
Suspicious Unknown Normal Attacker Victim

Actual Class suspicious 2880 45238 5636 25 44073 0.459
unknown 715 16202 15848 0 1072
normal 199 2 0 5898 81
attacker 0 0 0 8877 378
victim 2 0 0 5819 81

Table 20 
Confusion matrix for EM on OpenStack server data   

EM 
OpenStack server 

Predicted class Accuracy
Victim Attacker Normal

Actual Class victim 13094 0 1142 0.493
normal 58905 71414 13083
attacker 0 14579 622

Table 21 
Confusion matrix for SOM on external server data   

SOM 
External server 

Predicted class Accuracy
Attacker Suspicious No class Unknown

Actual Class suspicious 15399 34252 339938 14263 0.384
unknown 16030 913 934 15960
normal 3090 0 0 3090
attacker 8754 0 0 501
victim 215 0 0 5684
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learning based clustering techniques perform poorly. However k-means clustering gives good 

accuracy on OpenStack Server traffic data. These can be improved by proper data cleaning, 

binary feature encoding, normalisation and data standardisation methods. As clustering 

techniques require input data to follow a normal distribution for achieving better accuracy, in 

CIDDS-001 case features do not follow normal distribution and hence, poor accuracy is 

achieved. Performance of clustering techniques can be improved by capping, flouring and 

normalisation of attributes. Removal of outliers from the dataset can also improve the clustering 

performance. Kappa statistics for all classification techniques other than ANN is above average 

and hence it can be said that anomaly based NIDS using kNN, SVM, DT, RF, NB and DL can be 

developed. 
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although it takes a long time to build a trained model, DL gives better accuracy once a model 
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Table 22 
Confusion matrix for SOM on OpenStack server data   

SOM 
OpenStack Server 

Predicted class Accuracy
Attacker Suspicious No class Unknown

Actual Class victim 0 62 14174 0 0.463
attacker 50877 20672 21781 50072
normal 0 14918 283 0

Overall Evaluation

From the analysis results, it can be interpreted that most of the supervised learning based 
classification ML techniques perform better, only ANN fails to give acceptable accuracy. Figure 
9 shows the performance of all the used techniques in accuracy. Almost all unsupervised learning 
based clustering techniques perform poorly. However k-means clustering gives good accuracy 
on OpenStack Server traffic data. These can be improved by proper data cleaning, binary feature 
encoding, normalisation and data standardisation methods. As clustering techniques require 
input data to follow a normal distribution for achieving better accuracy, in CIDDS-001 case 
features do not follow normal distribution and hence, poor accuracy is achieved. Performance 
of clustering techniques can be improved by capping, flouring and normalisation of attributes. 
Removal of outliers from the dataset can also improve the clustering performance. Kappa 
statistics for all classification techniques other than ANN is above average and hence it can 
be said that anomaly based NIDS using kNN, SVM, DT, RF, NB and DL can be developed.

Figure 10 and Figure 11 show the kappa statistics and model building time for different 
classification techniques used for the analysis. Model building time is the amount of time an 
algorithm (ML) takes to build a trained model from training data. This time should be less so 
that trained model can be employed for intrusion detection in minimum possible time. It can 
be observed that model building time for kNN, DT, RF, NB, k-means and EM methods is much 
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gets completely built. Root mean squared error is one of the important factors to analyse the 

performance of classifiers on a particular dataset.  
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Figure 10. Performance of Techniques in Model Building Time Figure 11. Performance of techniques in model building time

less while ANN, DL, SOM methods take a much higher time to build a model. In case of DL, 
although it takes a long time to build a trained model, DL gives better accuracy once a model 
gets completely built. Root mean squared error is one of the important factors to analyse the 
performance of classifiers on a particular dataset. 

DL can be a suitable choice if target system (where NIDS is to be deployed, that is, a router 
or some dedicated analysing machine) is having high computational power. Tree model-based 
techniques like DT and RF can be a suitable choice if the target system is not capable of 
performing high computations and lack higher storage capabilities. 
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Figure 12 shows the RMSE in case of different ML techniques used in this study. In this 
case, ANN attains highest RMSE over both external server and OpenStack server data. SVM 
outputs RMSE are between 0.250 and 0.350. This is observed by running SVM multiple 
times. All the performance parameters are closely related and affect each other. Hence, it can 
be concluded that by making a trade-off between different performance parameters the best 
technique can be selected for developing anomaly based or signature-based NIDS.
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CONCLUSION

In this paper, the statistical and complexity analysis of CIDDS-001 dataset is presented and 
discussed. Supervised and unsupervised machine learning techniques are utilised to analyse the 
complexity of the dataset in eminent evaluation metrics. Evaluation results show that k-nearest 
neighbour, decision trees, random forests, naive bayes and deep learning based classifiers can 
be used to develop an efficient network intrusion detection systems. Based on the evaluation 
results it is concluded that CIDDS-001 dataset is suitable for the evaluation of Anomaly-based 
Network Intrusion Detection Systems. As follow-up, the researchers aim to carry out an in-depth 
comparative study of the CIDDS-001 dataset with existing benchmarking datasets.
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