
Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO

Article history:
Received: 29 December 2017
Accepted: 30 March 2018

E-mail addresses:
abhishek_6170034@nitkkr.ac.in (Abhishek Verma)
virender.ranga@nitkkr.ac.in (Virender Ranga)
*Corresponding Author

On Evaluation of Network Intrusion Detection Systems:
Statistical Analysis of CIDDS-001 Dataset Using Machine
Learning Techniques

Abhishek Verma* and Virender Ranga
Department of Computer Engineering, National Institute of Technology, Kurukshetra, Haryana, India

ABSTRACT

In this era of digital revolution, voluminous amount of data are generated from different networks on a
daily basis. Security of this data is of utmost importance. Intrusion detection systems have been found to
be one of the best solutions in detecting intrusions. Network intrusion detection systems are employed as
a defence system to secure networks. Various techniques for the effective development of these defence
systems are found in the literature. However, research on the development of datasets used for training
and testing purposes of such defence systems is of equal concern. Better datasets improve the online and
offline intrusion detection capabilities of detection models. Benchmark datasets like KDD 99 and NSL-
KDD cup 99 are obsolete and do not contain network traces of modern attacks like Denial of Service,
hence are unsuitable for the purpose of evaluation. In this study, a detailed analysis of CIDDS-001
dataset was conducted and the findings are presented. A wide range of well-known machine learning
techniques were used to analyse the complexity of the dataset. Evaluation metrics including detection
rate, accuracy, false positive rate, kappa statistics, and root mean squared error were utilised to assess
the performance of employed machine learning techniques.

Keywords: Anomaly, decision tree, k-means clustering, k-nearest neighbour, labelled flow, metrics,
random forests, signature

INTRODUCTION

Network security has rapidly become one
of the most pressing issues and of concern
for web users and service providers with a
continual growth in web utilisation (Medaglia
& Serbanati, 2010). A secure network can
be characterised in terms of its hardware
and software immunity against different
intrusions. A network can be secured by

Abhishek Verma and Virender Ranga

1308 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

incorporating strong observing, examination and safeguard procedures. Network Intrusion
Detection System (NIDS) incorporates these procedures to defend against network intrusions
(Debar, Dacier & Wespi, 1999). These defence systems perform continuous monitoring of
network traffic, analyse and report any intrusions. The major components of this system include
traffic collector, analysis engine, signature database and alarm storage, as shown in Figure 1.

	

4	
	

INTRODUCTION

Network security has rapidly become one of the most pressing issues and of concern for web

users and service providers with a continual growth in web utilisation (Medaglia & Serbanati,

2010). A secure network can be characterised in terms of its hardware and software immunity

against different intrusions. A network can be secured by incorporating strong observing,

examination and safeguard procedures. Network Intrusion Detection System (NIDS)

incorporates these procedures to defend against network intrusions (Debar, Dacier & Wespi,

1999). These defence systems perform continuous monitoring of network traffic, analyse and

report any intrusions. The major components of this system include traffic collector, analysis

engine, signature database and alarm storage, as shown in Figure 1.

	

Figure 1. Components of Intrusion Detection System

Each component plays an important role in intrusion detection. Network traffic is captured by the

traffic collector, that is, packet traces, analysis engine conducts a deep analysis of the captured

traffic information and sends alarm signals to alarm storage when intrusion is detected. The

signature database stores the signatures or patterns of known intruders, and these signatures are

used for matching purpose. A typical NIDS is illustrated in Figure 2.	

Figure 1. Components of intrusion detection system

Each component plays an important role in intrusion detection. Network traffic is captured
by the traffic collector, that is, packet traces, analysis engine conducts a deep analysis of the
captured traffic information and sends alarm signals to alarm storage when intrusion is detected.
The signature database stores the signatures or patterns of known intruders, and these signatures
are used for matching purpose. A typical NIDS is illustrated in Figure 2.	

5	
	

	

Figure 2. Illustration of Network Intrusion Detection System

NIDS can be classified in two classes, that is, misuse detection (MD) (Zhengbing, Zhitang, &

Junqi, 2008) and anomaly detection (AD) (Garcia-Teodoro, Diaz-Verdejo, Macia-Fernandez, &

Vazquez, 2009). MD-based systems use traffic patterns of already known attacks for detecting

intrusions in the network, while AD-based systems monitor any deviations from normal profiles

of network behaviour. MD-based NIDS perform well in accuracy and have a significantly lower

false alarm rate (FAR) but they perform poorly for unknown attacks. AD-based NIDS are

capable of detecting novel intrusions or attacks, however, they score a higher FAR compared to

MD-based NIDS.

Most of the benchmark datasets used for the evaluation of NIDS do not contain network traces of

modern attacks (for example, denial of service, port scanning) which make them unsuitable for

NIDS. This limitation is solved by CIDDS-001 dataset (“CIDDS-001 dataset”, 2017) as it

contains modern attack network traces. Machine Learning (ML) has proven to be very effective

in the advancement of NIDS (Sommer & Paxson, 2010). It involves a detection system that

learns from a dataset consisting of attack and normal packet traces and then classifies incoming

Figure 2. Illustration of network intrusion detection system

Evaluation of Network Intrusion Detection Systems

1309Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

NIDS can be classified in two classes, that is, misuse detection (MD) (Zhengbing,
Zhitang, & Junqi, 2008) and anomaly detection (AD) (Garcia-Teodoro, Diaz-Verdejo, Macia-
Fernandez, & Vazquez, 2009). MD-based systems use traffic patterns of already known attacks
for detecting intrusions in the network, while AD-based systems monitor any deviations from
normal profiles of network behaviour. MD-based NIDS perform well in accuracy and have a
significantly lower false alarm rate (FAR) but they perform poorly for unknown attacks. AD-
based NIDS are capable of detecting novel intrusions or attacks, however, they score a higher
FAR compared to MD-based NIDS.

Most of the benchmark datasets used for the evaluation of NIDS do not contain network
traces of modern attacks (for example, denial of service, port scanning) which make them
unsuitable for NIDS. This limitation is solved by CIDDS-001 dataset (“CIDDS-001 dataset”,
2017) as it contains modern attack network traces. Machine Learning (ML) has proven to be
very effective in the advancement of NIDS (Sommer & Paxson, 2010). It involves a detection
system that learns from a dataset consisting of attack and normal packet traces and then classifies
incoming network traffic into attack or normal class. The researchers used various well-known
supervised and unsupervised learning-based ML models which are exhibited in Figure 3.

	

6	
	

network traffic into attack or normal class. The researchers used various well-known supervised

and unsupervised learning-based ML models which are exhibited in Figure 3.

	

Figure 3. Machine Learning Techniques Used in Dataset Analysis

CIDDS-001 Dataset

CIDDS-001 (“CIDDS-001”, 2017) is a labelled flow-based dataset (Ring, Wunderlich, Grudl,

Landes, & Hotho, 2017). It was developed primarily for the evaluation purpose of AD-based

NIDS. The dataset consists of traffic from OpenStack and External Servers. CIDDS-001 has 13

features and one class attribute. A total of 11 features were used in this analytical study. The

features of Attack ID and Attack Description were neglected in this study because they offer

more information about executed attacks. Hence, these attributes did not significantly contribute

to the analysis. About 153,026 instances from external servers and 172,839 instances from

OpenStack Server data were collected for analysis. Each instance of the dataset was labelled as

normal, attacker, victim, suspicious and unknown class. Table 1 provides the description of

CIDDS-001 dataset attributes.

Figure 3. Machine learning techniques used in dataset analysis

CIDDS-001 Dataset

CIDDS-001 (“CIDDS-001”, 2017) is a labelled flow-based dataset (Ring, Wunderlich, Grudl,
Landes, & Hotho, 2017). It was developed primarily for the evaluation purpose of AD-based
NIDS. The dataset consists of traffic from OpenStack and External Servers. CIDDS-001 has
13 features and one class attribute. A total of 11 features were used in this analytical study. The
features of Attack ID and Attack Description were neglected in this study because they offer

Abhishek Verma and Virender Ranga

1310 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

more information about executed attacks. Hence, these attributes did not significantly contribute
to the analysis. About 153,026 instances from external servers and 172,839 instances from
OpenStack Server data were collected for analysis. Each instance of the dataset was labelled
as normal, attacker, victim, suspicious and unknown class. Table 1 provides the description
of CIDDS-001 dataset attributes.

Table 1
Details of CIDDS-001

Sl. No. Attribute Name Attribute Description
1 Src IP IP Address of the source node
2 Src Port Port of the source node
3 Dest IP IP Address of the destination node
4 Dest Port Port of the destination node
5 Proto Protocol
6 Date first seen Start time flow first seen
7 Duration Flow duration
8 Bytes Transmitted bytes
9 Packets Transmitted packets
10 Flags TCP Flags
11 AttackDescription Additional information about attack
12 AttackType Type of attack
13 AttackID Unique attack ID (same type of attacks have same ID)
14 Class Category or label of the instance
Note: Retrieved from CIDDS-001 dataset. Copyright 2017 by CIDDS-001 dataset (Reprinted with
permission)

RELATED WORK

An analytical study on NSL-KDD cup 99 dataset was conducted by Aggarwal and Sharma
(2015; “NSL-KDD cup 99 dataset”, 1999). The attributes of the dataset were categorised in four
classes, that is, basic, content, traffic and host. The contribution of every class was evaluated
in terms of DR and FAR. Siddiqui and Naahid (2013) performed the analysis of NSL-KDD
dataset for Intrusion Detection (ID) using clustering algorithm-based data mining techniques.
They used k-means clustering to build 1000 clusters over 494,020 records and focused on
establishing a relationship between attack types and protocols used in intrusion. Artificial neural
network (ANN) was utilised for the analysis of NSL-KDD dataset (Ingre & Yadav, 2015).

DR for intrusion detection and attack type classification was found to be 81.2% and 72.9%,
respectively. According to Moustafa and Slay (2015), the study on irrelevant features of KDD
99 (“KDD 99 dataset”, 1999) and UNSW-NB15 (“UNSW-NB15 dataset”, 2017) found that
they lead to reduction of NIDS efficiency. An association rule mining algorithm was used for
the strongest feature selection from the two datasets and subsequently, classifiers did the task of
evaluation in accuracy and false alarm rate (FAR). The results indicate that features of UNSW-

Evaluation of Network Intrusion Detection Systems

1311Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

NB15 are much more efficient than the KDD 99 dataset. Kayacik and Zincir-Heywood (2005)
studied three Intrusion Detection System (IDS) benchmark datasets using ML algorithms.
Clustering and neural network algorithms analysed the IDS datasets and distinguished the
differences between synthetic and real-world traffic.

Parsazad, Saboori and Allahyar (2012) proposed a fast feature selection method that finds
low-quality features in the dataset. The variance of a random variable is used as a measure
for finding the quality of a feature. The authors presented a comparison between popular
existing similarity-based algorithms like maximal information compression index, correlation
coefficient and least square regression error. The output of these algorithms recommend some
features which are then fed to naive bayes and k-nearest neighbour classifiers for the purpose of
testing the proposed method. This proposed technique outperformed existing similarity-based
algorithms in terms of computational cost.

Rampure and Tiwari (2015) suggested a rough set theory-based feature selection on KDD
Cup99 dataset. This is based on the premise that the degree of precision in the data is lowered
and data pattern visibility is increased. Based on this premise, facts from imperfect data
were discovered. Feature selection using Random Forests was documented in Hasan, Nasser,
Ahmad and Molla (2016). The researchers derived a new dataset, RRE-KDD, after removing
redundant records from KDD99Train + and KDD99Test+ sets of the NSL-KDD dataset. RRE-
KDD is then used for the evaluation of Random Forest (RF). RF technique selects the most
important features needed for classification and increases accuracy with reduction in time
complexity. Janarthanan and Zargari (2017) analysed the UNSW-NB15 dataset using Weka tool.
Different attribute selection techniques like CfsSubsetEval (attribute evaluator) with Greedy
Stepwise method, and InfoGainAttibuteEval (attribute evaluator) with Ranker method were
used for selecting important features. The best selected subset of attributes was utilised for
classification using a few machine learning algorithms including RF. It was found that kappa
statistics improved due to classification using selected features. A weighted feature selection
method for wifi impersonation detection using AWID (“AWID dataset”, 2018) dataset was
proposed in Aminanto, Choi, Tanuwidjaja, Yoo and Kim (2018). The researchers used deep-
feature extraction and selection for feature reduction in the dataset. The proposed approach
achieved an accuracy of 99.918% and a FAR of 0.012%. Verma and Ranga (2018) presented
an analytical study on CIDDS-001 using distance-based machine learning methods, whereby
kNN and k-means algorithms were used for complexity analysis.

EXPERIMENTAL SETUP

Research Methodology

Weka tool was utilised for performing the analysis (Hall et al., 2009).

•	 Dataset preprocessing involving handling missing values and feature normalization was
performed.

•	 Supervised and unsupervised machine learning algorithms were executed.

•	 Results of the simulated algorithms were tabulated and analysed.

Abhishek Verma and Virender Ranga

1312 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Supervised Learning Algorithms

k-nearest Neighbour (kNN). kNN is an instance-based learning and classification technique
(Cover & Hart, 1967). Basic founding of kNN algorithm is distance function that calculates the
correspondence or dissimilarity between two instances or points. There are different distance
measures used in kNN. The most common distance measure is Euclidean distance. It can be
defined as D (a, b) as Equation 1 (Kaur, 2014)

 							 (1)

where ai is the ith featured element of the instance a, bi is the ith featured element of the instance
b and r is the total number of the features in the dataset.

Support Vector Machine (SVM). SVM aims to find a hyper-plane which classifies all the
training instances into different classes (binary classification or multiclass classification)
(Suykens & Vandewelle, 1999). SVM algorithm takes observed instances and associated
outputs, that is, binary or N-ary. Then, it designs a model that can classify new instances into
different classes. Training instances are mapped as points in coordinate space, partitioning the
instance input sets linearly. There can be the choice of many hyper-planes that can partition
the training instance sets but the finest choice will be that with the maximum distance from the
nearest instance of any class. In a case of two hyper-planes, P which classifies the instances
correctly but has less distance from the nearest instance and Q which has maximum distance
but has a small error in classification, hyper-plane P is selected in such case. SVM is effective
for high dimensional spaces.

Decision Trees (DT). These are a type of supervised learning algorithms that are mostly used
for solving classification problems of ML. Tree models in which the target variable can take
discrete values as input are known as classification trees. DT consists of entities like leaves
and branches. Leaves signify class labels and branches signify aggregations of attributes that
lead to those class labels. It works with both discrete and continuous data. DT algorithm splits
the samples into two or more homogeneous sets based on a most significant splitter in input
variables. DT suffer from overfitting problem which can be handled by Bagging and Boosting
(Quinlan, 1996). DT works effectively over discrete data. Figure 4 shows a typical example
of DT (Bhargava, Sharma, Bhargava, & Mathuria, 2013).

Evaluation of Network Intrusion Detection Systems

1313Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Random Forests (RF). As mentioned earlier DT suffers from overfitting problem. RF corrects
this problem efficiently by averaging multiple deep decision trees (Breiman, 2001). RF is
the ensemble learning algorithm used to solve classification and regression problems. Their
operation involves the building of multiple DT during training time. The output is the mode
of the classes of the distinct DT when classification task is being performed. RF gives better
results than DT. A simple illustration of RF is shown in Figure 5.

	

10	
	

Support Vector Machine (SVM). SVM aims to find a hyper-plane which classifies all the

training instances into different classes (binary classification or multiclass classification)

(Suykens & Vandewelle, 1999). SVM algorithm takes observed instances and associated outputs,

that is, binary or N-ary. Then, it designs a model that can classify new instances into different

classes. Training instances are mapped as points in coordinate space, partitioning the instance

input sets linearly. There can be the choice of many hyper-planes that can partition the training

instance sets but the finest choice will be that with the maximum distance from the nearest

instance of any class. In a case of two hyper-planes, P which classifies the instances correctly but

has less distance from the nearest instance and Q which has maximum distance but has a small

error in classification, hyper-plane P is selected in such case. SVM is effective for high

dimensional spaces.

Decision Trees (DT). These are a type of supervised learning algorithms that are mostly used for

solving classification problems of ML. Tree models in which the target variable can take discrete

values as input are known as classification trees. DT consists of entities like leaves and branches.

Leaves signify class labels and branches signify aggregations of attributes that lead to those class

labels. It works with both discrete and continuous data. DT algorithm splits the samples into two

or more homogeneous sets based on a most significant splitter in input variables. DT suffer from

overfitting problem which can be handled by Bagging and Boosting (Quinlan, 1996). DT works

effectively over discrete data. Figure 4 shows a typical example of DT (Bhargava, Sharma,

Bhargava, & Mathuria, 2013).

	

Figure 4. Decision Tree [From “Decision Trees”, para. 2, by Henrich 2018 (http://www.sfs.uni-

tuebingen.de/~vhenrich/ss12/java/homework/hw7/decisionTrees.html). In the public domain.]

Figure 4. Decision tree [From “Decision Trees”, para. 2, by Henrich 2018 (http://www.sfs.uni-tuebingen.
de/~vhenrich/ss12/java/homework/hw7/decisionTrees.html). In the public domain.]	

11	
	

Random Forests (RF). As mentioned earlier DT suffers from overfitting problem. RF corrects

this problem efficiently by averaging multiple deep decision trees (Breiman, 2001). RF is the

ensemble learning algorithm used to solve classification and regression problems. Their

operation involves the building of multiple DT during training time. The output is the mode of

the classes of the distinct DT when classification task is being performed. RF gives better results

than DT. A simple illustration of RF is shown in Figure 5.

	

Figure 5. Artificial Neural Network

Artificial Neural Networks (ANN). ANN can be visualised as a weighted directed graph which

consists of nodes and edges (Schalkoff, 1997). Nodes represent artificial neurons and directed

edges with weights (strength between neurons) represent connections between artificial neurons.

The output of one neuron acts as input to another neuron. ANN receives input from external

world in the form of vector, that is, resembling some pattern or image. The weights are adjusted

during learning of ANN which further help to solve the classification problems. ANN

architecture consists of the input layer, output layer and hidden layer, each layer consists of

neurons. Input layer receives input from the external world, output layer responds to the input

fed to input layer on the basis of its learning capability. Hidden layer is intermediary between the

input layer and output layer; it transforms the input in some manner such that output layer can

utilise. These layers can be partially or fully connected. In this study, the researchers used

multilayer perceptron model with back propagation learning.

Figure 5. Artificial neural network

Artificial Neural Networks (ANN). ANN can be visualised as a weighted directed graph
which consists of nodes and edges (Schalkoff, 1997). Nodes represent artificial neurons and
directed edges with weights (strength between neurons) represent connections between artificial
neurons. The output of one neuron acts as input to another neuron. ANN receives input from
external world in the form of vector, that is, resembling some pattern or image. The weights are
adjusted during learning of ANN which further help to solve the classification problems. ANN
architecture consists of the input layer, output layer and hidden layer, each layer consists of

Abhishek Verma and Virender Ranga

1314 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

neurons. Input layer receives input from the external world, output layer responds to the input
fed to input layer on the basis of its learning capability. Hidden layer is intermediary between
the input layer and output layer; it transforms the input in some manner such that output layer
can utilise. These layers can be partially or fully connected. In this study, the researchers used
multilayer perceptron model with back propagation learning.

General ANN architecture (I-H-O) for c class is shown in Figure 6, where I represents the
count of input nodes, H represents the count of hidden layer nodes and O represent the count
of output nodes.

	

12	
	

General ANN architecture (I-H-O) for c class is shown in Figure 6, where I represents the count

of input nodes, H represents the count of hidden layer nodes and O represent the count of output

nodes.

	

Figure 5. Random Forests

Naive Bayes (NB). NB approaches are a family of simple probabilistic classifiers constructed by

applying Bayes theorem. NB considers naive assumption of independence between every pair of

features or attributes (Lewis, 1998). By applying a suitable pre-processing of training data NB

can compete with most of the advanced approaches in its domain, that is, SVM and ANN. NB is

easy to be trained using supervised learning configuration. In many practical applications,

parameter estimation for naive Bayes models uses the method of maximum likelihood. In other

words, one can work with the naive Bayes model without accepting Bayesian probability or

using any Bayesian methods. Equation 2 represents Bayes theorem.

)(
)()(

)(
BP
APABP

BAP = 2

where A represents target attribute or dependent event, B represents predictor attribute or prior

event. P(A) is said to be priori probability of A and P(A|B) is called as posteriori probability of B

and P(B|A) is likelihood of B if the hypothesis A is true.

	

Figure 6. Random forests

Naive Bayes (NB). NB approaches are a family of simple probabilistic classifiers constructed by
applying Bayes theorem. NB considers naive assumption of independence between every pair
of features or attributes (Lewis, 1998). By applying a suitable pre-processing of training data
NB can compete with most of the advanced approaches in its domain, that is, SVM and ANN.
NB is easy to be trained using supervised learning configuration. In many practical applications,
parameter estimation for naive Bayes models uses the method of maximum likelihood. In other
words, one can work with the naive Bayes model without accepting Bayesian probability or
using any Bayesian methods. Equation 2 represents Bayes theorem.

 							 (2)

where A represents target attribute or dependent event, B represents predictor attribute or prior
event. P(A) is said to be priori probability of A and P(A|B) is called as posteriori probability
of B and P(B|A) is likelihood of B if the hypothesis A is true.

Deep Learning (DL). It is a method based on the learning of data representations in contrast
to task definite methods without getting stuck to local minima. DL comprises ANN with more
number of hidden layers making it more dense and complex (LeCun, Bengio, & Hinton, 2015).

Evaluation of Network Intrusion Detection Systems

1315Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

It can be trained using supervised, semi-supervised or unsupervised learning. In this work,
supervised learning is used. Cascaded multiple layers of neurons for feature extraction and
transformation are used. It learns multiple representations of data that correspond to different
levels of abstraction. Deep learning is applicable to many real-world problem solving situations.
Figure 7 illustrates the deep learning model.

	

13	
	

Deep Learning (DL). It is a method based on the learning of data representations in contrast to

task definite methods without getting stuck to local minima. DL comprises ANN with more

number of hidden layers making it more dense and complex (LeCun, Bengio, & Hinton, 2015). It

can be trained using supervised, semi-supervised or unsupervised learning. In this work,

supervised learning is used. Cascaded multiple layers of neurons for feature extraction and

transformation are used. It learns multiple representations of data that correspond to different

levels of abstraction. Deep learning is applicable to many real-world problem solving situations.

Figure 7 illustrates the deep learning model.

Figure 6. Deep Learning Network [From “Machine Learning, Deep Learning, and AI: What’s

the Difference?”, para. 1, by Woodie, 2017 (https://www.datanami.com/2017/05/10/machine-

learning-deep-learning-ai-whats-difference/). In the public domain.]

Unsupervised Learning Algorithms

k-means Clustering. k-means is known to be one of the simplest unsupervised learning

algorithm from distance-based perspective. It partitions n instances into k clusters, where each

instance is grouped with the cluster having the nearest mean. Given a set of instances (p1, p2,…,

pn), where each instance is a d-dimensional real vector. k-means clustering aims to partition p

instances into k (≤ p) sets Z = {Z1, Z2,…, Zk} in order to minimise the variance. k-means can be

illustrated as Equation 3 (Kriegel, Schubert, & Zimek, 2016).

∑∑∑
== ∈

=−
k

i
ii

k

i Zp
ziZ VarZZp

i 11

max
2 minargminarg µ 3

where µi represents the mean of points in set Zi.

Figure 7. Deep learning network [From “Machine Learning, Deep Learning, and AI: What’s the Difference?”,
para. 1, by Woodie, 2017 (https://www.datanami.com/2017/05/10/machine-learning-deep-learning-ai-whats-
difference/). In the public domain.]

Unsupervised Learning Algorithms

k-means Clustering. k-means is known to be one of the simplest unsupervised learning
algorithm from distance-based perspective. It partitions n instances into k clusters, where each
instance is grouped with the cluster having the nearest mean. Given a set of instances (p1, p2,…,
pn), where each instance is a d-dimensional real vector. k-means clustering aims to partition p
instances into k (≤ p) sets Z = {Z1, Z2,…, Zk} in order to minimise the variance. k-means can
be illustrated as Equation 3 (Kriegel, Schubert, & Zimek, 2016).

 				 (3)

where µi represents the mean of points in set Zi.

Expectation-Maximisation Clustering (EM). EM clustering technique is very similar to
k-means clustering (Moon, 1996). EM clustering extends the basic methodology of k-means
clustering in two ways. EM algorithm calculates the probabilities of cluster memberships based
on one or more probability distributions. EM aims to maximisze the overall probability of the
data, given the final clusters.

Self-Organising Maps (SOM). It is based on unsupervised learning class of neural network
models. SOM can perform clustering of data without prior knowledge of class categories of
input data (Kohonen, 1998). SOM provides a topology preserving mapping from the high
dimensional data space to map neurons (units). This mapping preserves the distance between
points. Points which are near to each other are mapped to nearby maps units in the SOM.
SOM network can recognise inputs which it has encountered before. Figure 8 represents SOM.

Abhishek Verma and Virender Ranga

1316 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Table 2 lists different Weka classes used for the analysis of CIDDS-001 dataset.

	

14	
	

Expectation-Maximisation Clustering (EM). EM clustering technique is very similar to k-

means clustering (Moon, 1996). EM clustering extends the basic methodology of k-means

clustering in two ways. EM algorithm calculates the probabilities of cluster memberships based

on one or more probability distributions. EM aims to maximisze the overall probability of the

data, given the final clusters.

Self-Organising Maps (SOM). It is based on unsupervised learning class of neural network

models. SOM can perform clustering of data without prior knowledge of class categories of input

data (Kohonen, 1998). SOM provides a topology preserving mapping from the high dimensional

data space to map neurons (units). This mapping preserves the distance between points. Points

which are near to each other are mapped to nearby maps units in the SOM. SOM network can

recognise inputs which it has encountered before. Figure 8 represents SOM.

Figure 7. Self-Organising Maps (SOM)

Table 2 lists different Weka classes used for the analysis of CIDDS-001 dataset.

Figure 8. Self-Organising Maps (SOM)

Table 2
Weka classes used for analysis of CIDDS-001

Machine Learning Techniques Weka Class
Supervised
Learning based
Techniques

k-Nearest Neighbour weka.classifiers.lazy.Ibk
Support Vector Machine weka.classifiers.functions.SMO
Decision Trees weka.classifiers.trees.J48
Random Forests weka.classifiers.trees.RandomForest
Artificial Neural Networks weka.classifiers.functions.MultilayerPerceptron
Naive Bayes weka.classifiers.bayes.NaiveBayes
Deep Learning weka.classifiers.functions.Dl4jMlpClassifier
k-Means Clustering weka.clusterers.SimpleKMeans

Unsupervised
Learning based
Techniques

Expectation-Maximization
Clustering

weka.clusterers.EM

Self-Organizing Maps weka.clusterers.SelfOrganizingMap

Evaluation Metrics

Performance of machine learning classifiers in this analytical study were evaluated using
eminent metrics, such as detection rate (DR), false positive rate (FPR), f-measure, accuracy,
precision, root mean squared error and kappa statistics. All these metrics are evaluated from the
elements of the confusion matrix. The elements of confusion matrix are true positive (TP), true
negative (TN), false positive (FP) and false negative (FN). Typically, TP represents the number
of instances that are correctly classified as the attack. TN represents the number of instances that
are correctly classified as normal. FP is the count of incorrectly classified normal instances as
attack instances. Similarly, FN is the count of incorrectly classified attack instances as normal

Evaluation of Network Intrusion Detection Systems

1317Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

instances. Accuracy is defined as the ratio of all correctly classified instances (TP, TN) to all
the instances (TP, TN, FP, and FN). Accuracy is denoted by Equation 4. DR (true positive
rate) is the ratio of correctly classified instances (TP) as attacks to all the correctly classified
attacks (TP) and normal instances (TN). DR is represented by Equation 5. Precision (positive
predictive value) is the ratio of TP to a total of TP and FP. Equation 6 represents precision.
The harmonic mean of precision and DR is known as f-measure. It is denoted by Equation 7.

Root mean squared error (RMSE) is a quadratic scoring rule which measures the average
magnitude of the error (Levinson, 1946). It indicates the accuracy of the probability estimates
that are generated by the classification model. Equation 8 represents the RMSE, where P is the
original value or forecast value, O represents observed value and n is the number of samples.

In case of multi-class classification, evaluation measures like accuracy, precision and
detection rate do not provide a full view of the classifier performance. Precision and detection
rate are used in contrast to accuracy when there are imbalanced classes. Kappa statistics (K)
is used in such case as it handles multi-class and imbalanced class like problems (Viera &
Garrett, 2005). Kappa is defined in Equation 9, where Pr(a) is observed agreement and Pr(e)
is expected agreement. K has value less than or equal to 1. Value of 0 or less represents that
classifier is useless.

 						 (4)

 							 (5)

 								 (6)

 						 (7)

 							 (8)

 								 (9)

RESULTS AND DISCUSSION

Various supervised and unsupervised machine learning techniques were utilised for examining
the complexity of CIDDS-001. In this study, 10 techniques were used which included
classification techniques like kNN, SVM, DT, ANN, DL, RF, NB, and clustering techniques
like k-means, EM, SOMs. All the experiments were done on Weka (version 3.9.1) using Intel(R)
7700 having a clock speed of 3.60 GHz processor with 8 GB primary memory running on
Windows 10 Pro. Accuracy was given in scale between 0 and 1, that is, 0.36 would be 36%
accuracy (multiplied by 100).

Abhishek Verma and Virender Ranga

1318 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis of Supervised Learning Algorithms

Analysis Using kNN. Firstly, kNN classifier is used for the analysis of external server traffic
data. Features named “flows” and “tos” are not considered for the analytical study. Results
of kNNclassifier execution are shown for 1, 2, 3, 4, and 5 neighbours in Table 3. Secondly,
kNN classifier is analysed on OpenStack Server traffic data. The researchers selected 172839
instances from week 1 traffic data using reservoir sampling (Vitter, 1985). Results of kNN
classifier execution are shown in Table 4. Approximately for every execution of kNN classifier
on the external server traffic data, models average accuracy is 99%. Maximum accuracy of
99.6% was achieved with 2NN and minimum 99.3% with 5NN. Similarly, for kNN classifier
execution on OpenStack traffic data models, average accuracy was 100% in each case, this
may be due to a random sampling of instances from the dataset file which can lead to some
biased instance selections. Dataset can be analysed using other evaluation metrics like ROC
curve and FAR (Hand, 2009).

Table 3
Performance of kNN on external server data

Neighbours Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure

1NN 0.995 0.004 0.998 0.995 0.996 suspicious 0.995
0.993 0.004 0.986 0.993 0.990 unknown
1.000 0.000 0.999 1.000 0.999 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

2NN 0.997 0.006 0.997 0.997 0.997 suspicious 0.996
0.990 0.003 0.991 0.990 0.990 unknown
1.000 0.000 0.999 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

3NN 0.994 0.006 0.997 0.994 0.995 suspicious 0.994
0.991 0.005 0.983 0.991 0.987 unknown
1.000 0.000 0.996 1.000 0.998 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 0.996 1.000 0.998 victim

4NN 0.996 0.007 0.996 0.994 0.996 suspicious 0.995
0.989 0.003 0.988 0.989 0.988 unknown
1.000 0.000 0.996 1.000 0.998 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

5NN 0.993 0.006 0.996 0.993 0.995 suspicious 0.993
0.989 0.005 0.982 0.989 0.986 unknown
1.000 0.000 0.996 1.000 0.998 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

Evaluation of Network Intrusion Detection Systems

1319Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis Using Support Vector Machine. John Platt’s sequential minimal optimisation
algorithm was used to train SVM classifier (Platt, 1998). Firstly, SVM was trained over week
1 external server data. Accuracy of 95.3% was achieved in this case with RMSE of 0.320.
Performance of SVM classifier on external server traffic is shown in Table 5. Secondly, SVM
was trained over OpenStack server data.

In this case classifier achieved accuracy of 95.3% with RMSE of 0.272. Considerably good
accuracy was achieved with SVM, hence a SVM based NIDS can be built. Modified algorithms
for SVM training can be used to reduce model building time (Tsang, Kwok, & Cheung, 2005).
Other variants of SVM can also be used to perform analysis of CIDDS-001. Performance of
SVM classifier on OpenStack Traffic is tabulated in Table 6.

Table 4
Performance of kNN on OpenStack server data

Neighbours Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure

1NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 1.000 attacker

2NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 0.999 attacker

3NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 0.999 attacker

4NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.998 0.000 1.000 0.998 0.999 attacker

5NN 1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.001 1.000 1.000 1.000 normal
0.999 0.000 1.000 0.999 1.000 attacker

Table 5
Performance of SVM on external server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.976 0.088 0.951 0.976 0.964 suspicious 0.953
0.860 0.018 0.933 0.860 0.895 unknown
0.981 0.001 0.968 0.981 0.974 normal
1.000 0.000 0.999 1.000 1.000 attacker
0.999 0.000 1.000 0.999 1.000 victim

Abhishek Verma and Virender Ranga

1320 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis Using Decision Trees. DT J48 (C4.5) is analysed over external server traffic data.
It takes 4.61 seconds to build model for testing. Due to pruning characteristics of J48, model
size significantly decreased the training and testing time. The accuracy of 99.7 % was achieved
in the first case.

In second run J48 is trained over OpenStack server data. Model building time in this case
is 1.27 seconds which is an acceptable time for NIDS training. Fortunately J48 provides 100%
correct classifications. Efficient split decides the correctness of DT. Hence it can be concluded
that J48 with pruning characteristics not only achieves a good accuracy but also manages
space complexity. Table 7 shows the performance of DT on external server traffic data. Table
8 represents the performance of DT classifier on OpenStack server traffic data.

Table 6
Performance of SVM on OpenStack server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.997 0.000 0.999 0.997 0.998 victim 0.999
1.000 0.000 1.000 1.000 1.000 normal
0.998 0.000 0.997 0.998 0.998 attacker

Table 7
Performance of DT on external server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 suspicious 0.997
1.000 0.000 0.999 0.999 0.000 unknown
1.000 0.000 1.000 1.000 0.000 normal
1.000 0.000 1.000 1.000 0.000 attacker
1.000 0.000 1.000 1.000 0.000 victim

Table 8
Performance of DT on OpenStack Server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.000 1.000 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker

Evaluation of Network Intrusion Detection Systems

1321Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis Using Random Forests. RF works by building many small classifiers and then
collects votes from each one to decide the class of the test instance. This works on the voting
method where small classifiers vote and the majority vote was selected as the output class.
Firstly, RF was used for External Server data. It took 46.98 seconds to build the model. The
accuracy of 99% was achieved in the first run. Performance of RF classifier on external server
traffic is presented in Table 9.

Secondly, RF was used over OpenStack Server data. 100% accuracy was achieved second
run model building time of 30.07 seconds. It can be observed that tree based algorithms perform
well on CIDDS-001 dataset. RMSE is almost negligible in both cases. Performance of RF
classifier on OpenStack server traffic is shown in Table 10.

Table 9
Performance of RF on external server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 suspicious 0.999
1.000 0.000 1.000 1.000 1.000 unknown
1.000 0.000 1.000 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

Table 10
Performance of RF on OpenStack server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 0.000 1.000 1.000 1.000 victim 1.000
1.000 0.000 1.000 1.000 1.000 normal
1.000 0.000 1.000 1.000 1.000 attacker

Analysis using Artificial Neural Networks. Analysis results show a very poor performance of
ANN over both external and OpenStack server data as compared to other techniques employed.
This may be possible due to improper dataset preprocessing. However, this can be improved
by employing proper feature preprocessing methods (binary feature encoding). In the first run,
ANN is tested over External Server data. About 63.8% accuracy is achieved while the model
building time is 303.85 seconds which is very high. In second test ANN is tested on OpenStack
server data which shows an accuracy of 8.26% with model building time of 413.63 seconds.
Hence, ANN is unsuitable for NIDS development based on CIDDS-001. Table 11 and 12 show
performance of ANN classifier on external and OpenStack server traffic data respectively.

Abhishek Verma and Virender Ranga

1322 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

In this study, NB was tested first on external server traffic data. In the first case, NB yielded
accuracy of 87.1% with 0.226 RMSE. NB took 0.27 seconds to build a model from training
data. Secondly, NB is tested over OpenStack traffic. An accuracy of 99% was achieved with
0.074 RMSE. It took 0.34 seconds to build a model from training data in the second case.
Results show the effectiveness of probabilistic classifiers, that is, NB takes less time in the
model building while showing acceptable accuracy with minimum RMSE. Performance of
NB classifier on external and OpenStack server traffic data is presented in Tables 13 and 14
respectively.

Table 11
Performance of ANN on external server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 1.000 0.638 1.000 0.779 suspicious 0.638
0.000 0.000 0.000 0.000 0.000 unknown
0.000 0.000 0.000 0.000 0.000 normal
0.000 0.000 0.000 0.000 0.000 attacker
0.000 0.000 0.000 0.000 0.000 victim

Table 12
Performance of ANN on OpenStack server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
1.000 1.000 0.083 1.000 0.153 victim 0.083
0.000 0.000 0.000 0.000 0.000 normal
0.000 0.000 0.000 0.000 0.000 attacker

Table 13
Performance of NB on external server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.999 0.354 0.832 0.999 0.908 suspicious 0.871
0.426 0.001 0.994 0.426 0.597 unknown
0.977 0.000 1.000 0.977 0.988 normal
1.000 0.000 0.999 1.000 0.999 attacker
0.999 0.000 0.999 0.999 0.999 victim

Evaluation of Network Intrusion Detection Systems

1323Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis using Deep Learning (deeplearning4j). Using the Java based deep learning class
(deeplearning4j (http://Deeplearning4j.org)) CIDDS-001 was analysed. In the first run external
server traffic data was analysed using DL. Model from training data was built in 916.07 seconds.
An accuracy of 94.05% was achieved with RMSE of 0.139. Table 15 shows the performance
of DL based classifier on external server traffic data.

In the second test OpenStack server traffic is analysed. The model is built in 457.47 seconds
and instances are classified with 99.96% accuracy with 0.015 RMSE. It is quite clear that
although it takes a long time to build the model, accuracy achieved is acceptable. DL can be
used in high computation capable systems which aim to achieve higher accuracy in the long
run. Performance of DL classifier on OpenStack server traffic data is presented in Table 16.

Table 14
Performance of NB on OpenStack server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.998 0.000 1.000 0.998 0.999 victim 0.991
0.989 0.002 1.000 0.989 0.994 normal
0.998 0.010 0.906 0.998 0.950 attacker

Table 15
Performance of DL on external server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.951 0.078 0.956 0.951 0.953 suspicious 0.941
0.874 0.039 0.864 0.874 0.869 unknown
0.994 0.001 0.980 0.994 0.987 normal
1.000 0.000 1.000 1.000 1.000 attacker
1.000 0.000 1.000 1.000 1.000 victim

Table 16
Performance of DL on OpenStack server data

Evaluation metrics Class Accuracy
TP rate FP rate Precision Detection rate F-measure
0.997 0.000 0.999 0.997 0.998 victim 0.999
1.000 0.000 1.000 1.000 1.000 normal
0.999 0.000 0.997 0.999 0.998 attacker

Abhishek Verma and Virender Ranga

1324 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis of Unsupervised Learning Algorithms

Analysis using k-means Clustering. Firstly, k-means clustering was used for analysis of
external server traffic data. Features named “flows” and “tos” were not considered for analytical
study. Results of execution of k-means algorithm are shown in the form of Multi-class confusion
matrix and tabulated in Table 17. A total 38.1086% instances are correctly clustered by the
k-means algorithm. Secondly, k-means clustering is used over OpenStack server traffic data.
About 150,000 instances from week 1 traffic data are selected using reservoir sampling. The
results of the second execution are in Table 18. In this experiment 99.6627 instances are
correctly clustered.

Table 18
Confusion matrix for k-means on OpenStack server data

k-means
External server

Predicted class Accuracy
Victim Attacker Normal

Actual class victim 57955 0 0 0.997
attacker 0 57963 0
normal 90 416 33576

Table 17
Confusion matrix for k-means on external server data

k-means
External server

Predicted class Accuracy
Suspicious Unknown Normal Attacker Victim

Actual Class suspicious 28952 3788 28061 17218 19833 0.381
unknown 1977 14045 330 2545 14940
normal 32 20 3038 32 3058
attacker 0 4 719 8532 0
victim 2153 0 0 0 3749

Analysis using Expectation-Maximisation Clustering. Firstly, EM algorithm was used to
analyse external server traffic data. The same set of features as used in k-means clustering
were used. In this experiment, accuracy of 45.9% was achieved with model building time of
32.07 seconds. The results of this experiment are shown in the form of multi-class confusion
matrix and tabulated in Table 19. In the second experiment, EM was tested over OpenStack
server traffic. In this analysis, accuracy of 49.3% was achieved and the model was built in
10.18 seconds. As compared to previously mentioned techniques, this method not only does
time costly model building but also performs very badly. Confusion matrix for the second
experiment is presented in Table 20.

Evaluation of Network Intrusion Detection Systems

1325Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Analysis using Self-Organising Maps. In the first experiment, SOM was used to analyse
external server traffic data. SOM takes 601.37 seconds to build a model using training data.
After applying testing data it was found that SOM correctly clustered 38.4% test instances. In
the second experiment SOM was used to analyse OpenStack server traffic data. In this test,
SOM built a model in 719.59 seconds. About 46.3% test instances were correctly clustered
in this experiment. Table 21, and 22 show confusion matrix for first and second experiment
respectively.

Table 19
Confusion matrix for EM on external server data

EM
External server

Predicted class Accuracy
Suspicious Unknown Normal Attacker Victim

Actual Class suspicious 2880 45238 5636 25 44073 0.459
unknown 715 16202 15848 0 1072
normal 199 2 0 5898 81
attacker 0 0 0 8877 378
victim 2 0 0 5819 81

Table 20
Confusion matrix for EM on OpenStack server data

EM
OpenStack server

Predicted class Accuracy
Victim Attacker Normal

Actual Class victim 13094 0 1142 0.493
normal 58905 71414 13083
attacker 0 14579 622

Table 21
Confusion matrix for SOM on external server data

SOM
External server

Predicted class Accuracy
Attacker Suspicious No class Unknown

Actual Class suspicious 15399 34252 339938 14263 0.384
unknown 16030 913 934 15960
normal 3090 0 0 3090
attacker 8754 0 0 501
victim 215 0 0 5684

Abhishek Verma and Virender Ranga

1326 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

	

31	
	

learning based clustering techniques perform poorly. However k-means clustering gives good

accuracy on OpenStack Server traffic data. These can be improved by proper data cleaning,

binary feature encoding, normalisation and data standardisation methods. As clustering

techniques require input data to follow a normal distribution for achieving better accuracy, in

CIDDS-001 case features do not follow normal distribution and hence, poor accuracy is

achieved. Performance of clustering techniques can be improved by capping, flouring and

normalisation of attributes. Removal of outliers from the dataset can also improve the clustering

performance. Kappa statistics for all classification techniques other than ANN is above average

and hence it can be said that anomaly based NIDS using kNN, SVM, DT, RF, NB and DL can be

developed.

Figure 8. Performance of Techniques in Accuracy

Figure 10 and Figure 11 show the kappa statistics and model building time for different

classification techniques used for the analysis. Model building time is the amount of time an

algorithm (ML) takes to build a trained model from training data. This time should be less so that

trained model can be employed for intrusion detection in minimum possible time. It can be

observed that model building time for kNN, DT, RF, NB, k-means and EM methods is much less

while ANN, DL, SOM methods take a much higher time to build a model. In case of DL,

although it takes a long time to build a trained model, DL gives better accuracy once a model

Figure 9. Performance of techniques in accuracy

Table 22
Confusion matrix for SOM on OpenStack server data

SOM
OpenStack Server

Predicted class Accuracy
Attacker Suspicious No class Unknown

Actual Class victim 0 62 14174 0 0.463
attacker 50877 20672 21781 50072
normal 0 14918 283 0

Overall Evaluation

From the analysis results, it can be interpreted that most of the supervised learning based
classification ML techniques perform better, only ANN fails to give acceptable accuracy. Figure
9 shows the performance of all the used techniques in accuracy. Almost all unsupervised learning
based clustering techniques perform poorly. However k-means clustering gives good accuracy
on OpenStack Server traffic data. These can be improved by proper data cleaning, binary feature
encoding, normalisation and data standardisation methods. As clustering techniques require
input data to follow a normal distribution for achieving better accuracy, in CIDDS-001 case
features do not follow normal distribution and hence, poor accuracy is achieved. Performance
of clustering techniques can be improved by capping, flouring and normalisation of attributes.
Removal of outliers from the dataset can also improve the clustering performance. Kappa
statistics for all classification techniques other than ANN is above average and hence it can
be said that anomaly based NIDS using kNN, SVM, DT, RF, NB and DL can be developed.

Figure 10 and Figure 11 show the kappa statistics and model building time for different
classification techniques used for the analysis. Model building time is the amount of time an
algorithm (ML) takes to build a trained model from training data. This time should be less so
that trained model can be employed for intrusion detection in minimum possible time. It can
be observed that model building time for kNN, DT, RF, NB, k-means and EM methods is much

Evaluation of Network Intrusion Detection Systems

1327Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

	

32	
	

gets completely built. Root mean squared error is one of the important factors to analyse the

performance of classifiers on a particular dataset.

	

Figure 9. Performance of Techniques in Kappa Statistics

	

Figure 10. Performance of Techniques in Model Building Time

Figure 10. Performance of techniques in Kappa Statistics

	

32	
	

gets completely built. Root mean squared error is one of the important factors to analyse the

performance of classifiers on a particular dataset.

	

Figure 9. Performance of Techniques in Kappa Statistics

	

Figure 10. Performance of Techniques in Model Building Time Figure 11. Performance of techniques in model building time

less while ANN, DL, SOM methods take a much higher time to build a model. In case of DL,
although it takes a long time to build a trained model, DL gives better accuracy once a model
gets completely built. Root mean squared error is one of the important factors to analyse the
performance of classifiers on a particular dataset.

DL can be a suitable choice if target system (where NIDS is to be deployed, that is, a router
or some dedicated analysing machine) is having high computational power. Tree model-based
techniques like DT and RF can be a suitable choice if the target system is not capable of
performing high computations and lack higher storage capabilities.

Abhishek Verma and Virender Ranga

1328 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Figure 12 shows the RMSE in case of different ML techniques used in this study. In this
case, ANN attains highest RMSE over both external server and OpenStack server data. SVM
outputs RMSE are between 0.250 and 0.350. This is observed by running SVM multiple
times. All the performance parameters are closely related and affect each other. Hence, it can
be concluded that by making a trade-off between different performance parameters the best
technique can be selected for developing anomaly based or signature-based NIDS.

	

33	
	

DL can be a suitable choice if target system (where NIDS is to be deployed, that is, a router or

some dedicated analysing machine) is having high computational power. Tree model-based

techniques like DT and RF can be a suitable choice if the target system is not capable of

performing high computations and lack higher storage capabilities.

Figure 12 shows the RMSE in case of different ML techniques used in this study. In this case,

ANN attains highest RMSE over both External Server and OpenStack Server data. SVM outputs

RMSE are between 0.250 and 0.350. This is observed by running SVM multiple times. All the

performance parameters are closely related and affect each other. Hence, it can be concluded that

by making a trade-off between different performance parameters the best technique can be

selected for developing anomaly based or signature-based NIDS.

					

	

Figure 11. Performance of Techniques in Root Mean Squared Error

	
CONCLUSION

In this paper, the statistical and complexity analysis of CIDDS-001 dataset is presented and

discussed. Supervised and unsupervised machine learning techniques are utilised to analyse the

complexity of the dataset in eminent evaluation metrics. Evaluation results show that k-nearest

neighbour, decision trees, random forests, naive bayes and deep learning based classifiers can be

used to develop an efficient network intrusion detection systems. Based on the evaluation results

it is concluded that CIDDS-001 dataset is suitable for the evaluation of Anomaly-based Network

Figure 12. Performance of techniques in root mean squared error

CONCLUSION

In this paper, the statistical and complexity analysis of CIDDS-001 dataset is presented and
discussed. Supervised and unsupervised machine learning techniques are utilised to analyse the
complexity of the dataset in eminent evaluation metrics. Evaluation results show that k-nearest
neighbour, decision trees, random forests, naive bayes and deep learning based classifiers can
be used to develop an efficient network intrusion detection systems. Based on the evaluation
results it is concluded that CIDDS-001 dataset is suitable for the evaluation of Anomaly-based
Network Intrusion Detection Systems. As follow-up, the researchers aim to carry out an in-depth
comparative study of the CIDDS-001 dataset with existing benchmarking datasets.

ACKNOWLEDGMENTS

This paper is an extended version of the paper published in The 6th International Conference
on Smart Computing and Communications, NIT Kurukshetra, India, 2017.

REFERENCES
Aggarwal, P., & Sharma, S. K. (2015). Analysis of KDD dataset attributes-class wise for intrusion

detection. Procedia Computer Science, 57, 842-851.

Aminanto, M. E., Choi, R., Tanuwidjaja, H. C., Yoo, P. D., & Kim, K. (2018). Deep abstraction and
weighted feature selection for Wi-Fi impersonation detection. IEEE Transactions on Information
Forensics and Security, 13(3), 621-636.

Evaluation of Network Intrusion Detection Systems

1329Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

AWID. (2018). AWID dataset. Retrieved January 2, 2018, from http://icsdweb.aegean.gr/awid/download.
html

Bhargava, N., Sharma, G., Bhargava, R., & Mathuria, M. (2013). Decision tree analysis on j48 algorithm
for data mining. International Journal of Advanced Research in Computer Science and Software
Engineering, 3(6), 1114-1119.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

CIDDS-001 dataset. (2017). CIDDS – Coburg intrusion detection data set. Retrieved January 22,
2018, from https://www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/
ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1), 21-27.

Debar, H., Dacier, M., & Wespi, A. (1999). Towards a taxonomy of intrusion-detection systems. Computer
Networks, 31(8), 805-822.

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., & Vazquez, E. (2009). Anomaly-based
network intrusion detection: Techniques, systems and challenges. Computers and Security, 28(1),
18-28.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data
mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.

Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC
curve. Machine Learning, 77(1), 103-123.

Hasan, M. A. M., Nasser, M., Ahmad, S., & Molla, K. I. (2016). Feature selection for intrusion detection
using random forest. Journal of Information Security, 7(03), 129-140.

Henrich, V. (2018). Decision trees. Retrieved January 8, 2018, from http://www.sfs.uni-tuebingen.
de/~vhenrich/ss12/java/homework/hw7/decisionTrees.html

Ingre, B., & Yadav, A. (2015). Performance analysis of NSL-KDD dataset using ANN. In Proceedings of
International Conference on Signal Processing and Communication Engineering Systems (SPACES)
(pp. 92-96). Guntur, India: IEEE.

Janarthanan, T., & Zargari, S. (2017). Feature selection in UNSW-NB15 and KDDCUP’99 datasets.
In Proceedings of 26th International Symposium on Industrial Electronics (ISIE) (pp. 1881-1886).
Edinburgh, UK: IEEE.

Kaur, D. (2014). A comparative study of various distance measures for software fault prediction.
International Journal of Computer Trends and Technology, 17(3), 117-120.

Kayacik, H. G., & Zincir-Heywood, N. (2005). Analysis of three intrusion detection system benchmark
datasets using machine learning algorithms. In Proceedings of International Conference on Intelligence
and Security Informatics (pp. 362-367). Atlanta, GA, USA: Springer.

KDD 99 dataset. (1999). Index of /ml/machine-learning-databases/kddcup99-mld. Retrieved January 5,
2018, from http://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/.

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1), 1-6.

Kriegel, H. P., Schubert, E., & Zimek, A. (2016). The (black) art of runtime evaluation: Are we comparing
algorithms or implementations? Knowledge and Information Systems, 52(2), 1-38.

Abhishek Verma and Virender Ranga

1330 Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Levinson, N. (1946). The Wiener (root mean square) error criterion in filter design and prediction. Studies
in Applied Mathematics, 25(1-4), 261-278.

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. In
Proceedings of European Conference on Machine Learning (pp. 4-15). Chemnitz, Germany: Springer.

Medaglia, C. M., & Serbanati, A. (2010). An overview of privacy and security issues in the internet of
things. The Internet of Things (pp. 389-395). New York, USA: Springer.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Processing Magazine,
13(6), 47-60.

Moustafa, N., & Slay, J. (2015). The significant features of the UNSW-NB15 and the KDD99 data sets
for Network Intrusion Detection Systems. In Proceedings of 4th International Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS) (pp. 25-31). Kyoto,
Japan: IEEE.

NSL-KDD dataset. (1999). KDD Cup 1999 Data Data Set. Retrieved January 18, 2012, from http://
archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data.

Parsazad, S., Saboori, E., & Allahyar, A. (2012). Fast feature reduction in intrusion detection datasets.
In Proceedings of the 35th International Convention MIPRO (pp. 1023-1029). Opatija, Croatia: IEEE.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines.
Technical Report MSR-TR, 98(14), 1-21. Retrieved from https://www.microsoft.com/en-us/research/
publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/.

Quinlan, J. R. (1996, August 04-08). Bagging, boosting, and C4. 5. In Proceedings of Fourteenth National
Conference on Artificial Intelligence (pp. 725-730). Providence, Rhode Island: ACM.

Rampure, V., & Tiwari, A. (2015). A rough set based feature selection on KDD CUP 99 data set.
International Journal of Database Theory and Application, 8(1), 149-156.

Ring, M., Wunderlich, S., Grüdl, D., Landes, D., & Hotho, A. (2017). Flow-based benchmark data sets
for intrusion detection. In Proceedings of the 16th European Conference on Cyber Warfare and Security
(pp. 361-369). Dublin, Ireland: ACPI.

Schalkoff, R. J. (1997). Artificial neural networks (Vol. 1). New York: McGraw-Hill.

Siddiqui, M. K., & Naahid, S. (2013). Analysis of KDD CUP 99 dataset using clustering based data
mining. International Journal of Database Theory and Application, 6(5), 23-34.

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network
intrusion detection. In Proceedings of IEEE Symposium on Security and Privacy (SP), 2010 (pp.
305-316). Berkeley/Oakland, CA, USA: IEEE.

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural
Processing Letters, 9(3), 293-300.

Tsang, I. W., Kwok, J. T., & Cheung, P. M. (2005). Core vector machines: Fast SVM training on very
large data sets. Journal of Machine Learning Research, 6(Apr), 363-392.

UNSW-NB15 dataset. (2017). The UNSW-NB15 data set description. Retrieved January 12, 2018,
from http://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-
Datasets/.

Evaluation of Network Intrusion Detection Systems

1331Pertanika J. Sci. & Technol. 26 (3): 1307 - 1332 (2018)

Verma, A., & Ranga, V. (2018). Statistical analysis of CIDDS-001 dataset for Network Intrusion Detection
Systems using distance-based machine learning. Procedia Computer Science, 125, 709-716.

Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa statistic. Family
Medicine, 37(5), 360-363.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1), 37-57.

Woodie, A. (2017). Machine learning, deep learning, and AI: What’s the difference? Retrieved January
6, 2018, from https://www.datanami.com/2017/05/10/machine-learning-deep-learning-ai-whats-
difference/

Zhengbing, H., Zhitang, L., & Junqi, W. (2008). A novel Network Intrusion Detection System (NIDS)
based on signatures search of data mining. In Proceedings of First International Workshop on the
Knowledge Discovery and Data Mining, WKDD 2008. (pp. 10-16). Adelaide, SA, Australia: IEEE.

